UJI FEHLING ( Sifat Kimia mereduksi )
Metode pratikum karbohidrat uji fehling yaitu dengan langkah antara lain yaitu menyiapkan 7 tabung reaksi, berturut – turut diisi 10 tetes larutan laktosa, sukrosa, glukosa, fruktosa, kanji, madu, dan sirup 2%, menambahkan 5 tetes fehling A dan 5 tetes fehling B pada masing – masing tabung reaksi, selanjutnya digojog, menempatkan tabung reaksi tersebut dalam penangas air mendidih selama 10 menit, kemudian amati dan catat perubahan yang terjadi pada lembar pengamatan. Uji positif jika terbentuk endapan merah bata.
Uji Fehling bertujuan untuk mengetahui adanya gugus aldehid. Reagent yang digunakan dalam pengujian ini adalah Fehling A (CuSO4) dan Fehling B (NaOH dan KNa tartarat).Reaksi yang
terjadi dalam uji fehling adalah :Pemanasan dalam reaksi ini bertujuan agar gugus aldehida pada sampel terbongkar ikatannya dan dapat bereaksi dengan ion OH- membentuk asam karboksilat. Cu2O (endapan merah bata) yang terbentuk merupakan hasil sampingan dari reaksi pembentukan asam karboksilat.
Pereaksi Fehling Pereaksi ini dapat direduksi oleh selain karbohidrat yang mempunyai sifat mereduksijuga dapat direduksi oleh reduktor lain. Pereaksi Fehling terdiri dari dua larutan yaitu Fehling A dan Fehling B. Larutan Fehling A adalah CuSO4 dalam air, sedangkan Fehling B adalah larutan garam KNatrat dan NaOH dalam air. Kedua macam larutan ini disimpan terpisah dan baru dicampur menjelang digunakan untuk memeriksa suatu karbohidrat. Dalam pereaksi ini ion Cu2+ direduksi menjadi ion Cu+ yang dalam suasana basa akan diendapkan menjadi CuO2. Fehling B berfungsi mencegah Cu2+ mengendap dalam suasana
UJI TOLLENS
I. PENDAHULUAN
A. Latar Belakang
Aldehid dan keton merupakan dua dari sekian banyak contoh kelompok senyawa organik yang mengandung gugus karbonil. Aldehid itu sendiri merupakan salah satu senyawa karbon yang mengandung gugus karbonil (-CO-), dimana satu tangan mengikat gugus alkil dan tangan yang lain mengikat atom hidrogen. Sedangkan keton hampir sama dengan aldehid, hanya saja pada keton kedua tangan atom karbon mengikat gugus alkil.
Struktur umum aldehid yaitu R-CHO.Struktur umum keton yaitu R-CO-R’.
Aldehid dan keton banyak terdapat dalam sistem makhluk hidup.Seperti gula ribosa dan hormon progesteron merupakan contoh dari aldehid dan keton. Aldehid dan keton mempunyai bau yang khas, yang pada umumnya aldehid berbau merangsang sedangkan keton berbau harum.
Aldehid dan keton menyumbangkan manfaat yang cukup besar dalam kehidupan. Salah stu contohnya yaitu metanal yang merupakan contoh dari senyawa aldehid. Metanal ini lebih dikenal dengan nama formaldehida. Larutan formaldehida 40% digunakan sebagai antiseptik atau yang dikenal dengan sebutan formalin. Sedangkan pada keton yang pailing banyak dikenal yaitu aseton yang digunakan sebagai pelarut dan pembersih kaca. Oleh karena banyak manfaatnya maka kita harus mampu membedakan mana senyawa keton dan senyawa aldehid agar tidak terjadi kekeliruan dalam pemanfaatannya.
B. Tujuan
Membedakan senyawa aldehid dan keton dengan menggunakan “Uji Tollen“
II. TINJAUAN PUSTAKA
Aldehid dan keton bereaksi dengan berbagai senyawa, tetapi pada umumnya aldehid lebih reaktif dibanding keton. Kimiawan memanfaatkan kemudahan oksidasi aldehid dengan mengembangkan beberapa uji untuk mendeteksi gugus fungsi ini (Willbraham, 1992).
Uji Tollens merupakan salah satu uji yang digunakan untuk membedakan mana yang termasuk senyawa aldehid dan mana yang termasuk senyawa keton. Selain dengan menggunakan Uji Tollen untuk membedakan senyawa aldehid dan keton dapat juga menggunakan Uji Fehling dan Uji Benedict.
Aldehid lebih mudah dioksidasi dibanding keton. Oksidasi aldehid menghasilkan asam dengan jumlah atom karbon yang sama ( Hart, 1990). Hampir setiap reagensia yang mengoksidasi alkohol juga dapat mengoksidasi suatu aldehid.
Pereaksi tollens, pengoksidasi ringan yang digunakan dalam uji ini, adalah larutan basa dari perak nitrat. Larutannya jernih dan tidak berwarna. Untuk mencegah pengendapan ion perak sebagi oksida pada suhu tinggi, maka ditambahkan beberapa tetes larutan amonia. Amonia membentuk kompleks larut air dengan ion perak (Willbraham,1992).
Pereaksi Tollens sering disebut sebagai perak amoniakal, merupakan campuran dari AgNO3 dan amonia berlebihan. Gugus aktif pada pereaksi tollens adalh Ag2O yang bila tereduksi akan menghasilakan endapan perak. Endapan perak ini akan menempel pada tabung reaksi yang akn menjadi cermin perak. Oleh karena itu Pereaksi Tollens sering juga disebut pereaksi cermin perak (Sudarmo, 2006).
Aldehid dioksidasi menjadi anion karboksilat, ion Ag+ dalam reagensia Tollens direduksi menjadi logam Ag. Uji positf ditandai dengan terbentuknya cermin perak pada dinding dalam tabung reaksi.Reaksi dengan pereaksi Tollens mampu mengubah ikatan C-H pada aldehid menjadi ikatan C-O. Alkohol sekunder dapat dioksidasi menjadi keton selanjutnya keton tidak dapat dioksidasi lagi dengan menggunakan pereaksi Tollens. Hal ini disebabkan karena keton tidak mempunyai atom hidrogen yang menempel pada atom karbon karbonil. Keton hanya dapat dioksidasi dengan keadaan reaksi yang lebih keras dibandingkan dengan aldehid. Ikatan antara karbon karbonil dan salah satu karbonnya putus, memberikan hasil-hasil oksidasidengan jumlah atom karbon yang lebih sedikit daripada bahan keton asalnya. Kekecualian adalah dalam oksidasi keton siklik, karena jumlah atom karbonnya tetap sama. Misalnya, sikloheksanon dioksidasi secar besar-besaran menjadi asam dipat, bahan kimia pentinh dalam pembuatan Nylon.
III. ALAT DAN BAHAN
A. Alat
· Pipet tetes
· Tabung reaksi
· Alat pemanas air
B. Bahan
· Larutan 10% NaOH
· Larutan 10% Ag NO3
· NH4OH
· Aquades
· Etanol 95%
· Asetaldehid
· Glukosa
· Aseton
· Fruktosa
· Air mendidih
IV. METODE KERJA
Ø Menambahkan 20 tetes larutan 10% NaOH ke dalam 20 tetes larutan 10% AgNO3.
Ø Kemudian menambahkan NH4OH tetes demi tetes sampai endapannya hilang. Maka inilah yang disebut dengan pereaksi tollens.
Ø Melarutkan satu tetes sampel cair atau satu spatula sampel dalam sedikit air atau etanol 95%. Sampel yang digunakan abtara lain :
· Asetaldehid
· Aseton
· Glukosa
· Fruktosa
Ø Menambahkan sampel tetes demi tetes ke dalam pereaksi Tollens sambil mengocok-ngocoknya kemudian mengamati endapan Ag yang terbentuk.
Ø Memanaskan tabung reaksi dalam air yang mendidih.
Ø Mengamati hasil atau perubahan yang terjadi.
V. HASIL DAN PEMBAHASAN
A. Hasil Pengamatan
Larutan Warna Endapan
A 10% AgNO3 + 10% NaOH Keruh Ada
B Larutan A + NH4OH Bening Tidak ada
C Asetaldehid (sampel) + air Bening Tidak ada
D Larutan B + Larutan C Keruh Ada
E Larutan D dipanaskan Agak keruh (abu-abu), ada cermin perak pada dinding tabung reaksi Ada gelap
F Aseton (sampel) + air Bening Tidak ada
G Larutan B + Larutan F Bening Tidak ada
H Larutan G dipanaskan Keruh coklat kehitaman Tidak terbentuk cermin perak melainkan warna kehitaman
I Glukosa (sampel) + air Bening Tidak ada
J Larutan B + Larutan I Agak keruh Ada
K Larutan J dipanaskan Keruh abu-abu Ada endapan dan cermin perak
L Fructosa (sampel) + air Bening Tidak ada
M Larutan B + Larutan L Keruh coklat kehitaman Ada
N Larutan M dipanaskan Keruh coklat Ada endapan warna perak
B. Pembahasan
Hal yang membedakan Aldehid dengan keton yaitu kemampuan kedua senyawa ini apabila dioksidasi. Aldehid hádala larutan yang mudah sekali dioksidasi dengan menggunaknan Uji Tollens, sedangkan Keton tidak. Sifat inilah yang dimanfaatkan untuk dapat membedakan Aldehid dengan Keton. Apabila statu sampel direaksikan dengan pereaksi tollens kemudian dipanaskan dan muncul endapan cermin perak pada dinding tabung reaksi maka dapat dikatakan bahwa sampel itu merupakan salah satu dari senyawa aldehid.
Pada praktikum kali ini menggunakan empat jenis sampel yang diuji apakah dia termasuk ke dalam senyawa aldehid atau senyawa keton. Sampel-sampel tersebut antara lain asetaldehid, aseton, glucosa, dan fructosa.
Pada percobaan terhadap asetaldehid mula-mula ditambah dengan air, warnanya tetap bening dan tidak ada endapan sama sekali pada dasar tabung reaksinya. Kemudian ditambahkan dengan pereaksi tollens, maka terjadi perubahan. Warna larutan menjadi keruh dan munculnya endapan. Lalu larutan ini dipanaskan, dan terjadi perubahan yaitu warna larutan agak keruh abu-abu dan timbal cermin perak pada dinding tabung. Warna larutan berubah menjadi gelap. Dengan munculnya cermin perak pada dinding tabung reaksi pada percobaan kali ini maka dapat dinyatakan bahwa asetaldehid merupakan salah satu contoh dari senyawa aldehid.
Selanjutnya menggunakan sampel kedua yaitu aseton. Aseton ditambahkan dengan air, warna bening dan tidak terbentuk endapan. Kemudian ditambahkan pereaksi tollens, tidak terjadi perubahan. Warna tetap bening dan tidak terbentuk endapan. Kemudian larutan ini dipanaskan, warna larutan menjadi keruh coklat kehitaman dan tidak terbentuk cermin perak melainkan terbentuk endapan warna kehitaman. Dari pengamatan ini dapat dinyatakan bahwa aseton bukan merupakan salah satu senyawa aldehid, tetapi aseton merupakan senyawa keton.
Sampel berikutnya yaitu glucosa. Telah diketahui bahwa glukosa merupakan salah satu karbohidrat monosakarida yang merupakan sumber energi bagi makhluk hidup. Glukosa pada praktikum kali ini ditambahkan dengan air, warna bening dan tidak terbentuk endapan. Kemudian glukosa ditambahkan dengan pereaksi tollens, terjadi perubahan yaitu pada warna menjadi agak keruh dan ada endapannya. Kemudian larutan ini dipanaskan dan warna berubah menjadi keruh abu-abu, dan terbentuknya endapan cermin perak pada dinidng tabung reaksi. Terdapatnya cermin perak ini membuktikan bahwa glukosa merupakan salah satu dari senyawa aldehid.
Sampel tang terakhir yaitu fruktosa. Sama dengan glukosa, fruktosa juga merupakan salah satu jenis karbohidrat monosakarida. Apabila fruktosa ditambahkan dengan air warna yang terjadi tetap bening dan tidak ada endapan. Kemudian ditambahkan dengan pereaksi tollens maka warna berubah menjadi keruh coklat kehitaman dan terdapat endapan. Kemudian larutan ini dipanaskan maka warna menjadi keruh coklat dan terbentuklah endapan cermin perak pada dinding tabung reaksi. Jadi sama seperti glukosa, fruktosa juga merupakan salah satu senyawa aldehid.
Dari keempat sampel yang digunakan, yang bukan senyawa aldehid melainkan keton adalah Aseton. Ketiga larutan yaitu asetaldehid, glukosa, dan fruktosa termasuk ke dalam senyawa aldehid. Aseton tidak dapat membentuk cerminperak karena aseton tidak mempunyai atom hidrogen yang terikat pada gugus karbon. Kedua tangan gugus karbonnya sudah mengikat dua gugus alkil sehingga aseton tidak mengalami oksidasi ketika ditambah pereaksi tollens dan dipanaskan. Pada asetaldehid, glukosa dan fruktosa oksidasi terjadi denagn mudah karena ketiganya lebih reaktif.
VI. PENUTUP
A. Kesimpulan
Dengan menggunakan uji tollens ternyata mudah untuk membedakan mana senyawa aldehid dan keton. Suatu sampel dapat dikatakan sebagai aldehid apabila direaksikan dengan pereaksi tollens kemudian dipanaskan akan terbentuk cermin perak pada dinding tabung reaksinya. Sedangkan sampel dapat dikatakan bahwa ia merupakn senyawa keton apabila terjadi reaksi negatif pada saat ditambah pereaksi tollens dan dipanaskan. Sampel ini tidak akan menunjukkan adanya cerminperak pada dinidng tabung.
B. Saran
Dalam percobaan-percobaan berikutnya sebaiknya menggunakan sampel lain yang lebih berbeda. Praktikan sebaiknya dapat mendeskripsikan hasil perubahan ynag terjadi dari percobaan secara lebih jales lagi.
UJI IODIUM
Karbohidrat golongan polisakarida akan memberikan reaksi dengan larutan iodin dan memberikan warna spesifik bergantung pada jenis karbohidratnya. Amilosa dengan iodin akan berwarna biru; Amilopektin dengan iodin akan berwarna merah violet; glikogen maupun dekxtrin dengan iodin akan berwarna merah coklat.
Gula Sebelum dan Sesudah Invert
Gula
Gula adalah suatu karbohidrat sederhana yang menjadi sumber energi dan merupakan oligosakarida, polimer dengan derajat polimerisasi 2-10 dan biasanya bersifat larut dalam air yang terdiri dari dua molekul yaitu glukosa dan fruktosa. Gula memberikan flavor dan warna melalui reaksi browning secara non enzimatis pada berbagai jenis makanan. Gula paling banyak diperdagangkan dalam bentuk kristal sukrosa padat. Gula digunakan untuk mengubah rasa menjadi manis dan keadaan makanan atau minuman. Dalam industri pangan, sukrosa diperoleh dari bit atau tebu (Winarno 1997).
Gula Invert
Gula invert adalah Sebuah campuran bagian yang sama dari glukosa dan fruktosa yang dihasilkan dari hidrolisis sukrosa. Hal ini ditemukan secara alami dalam buah-buahan dan madu dan diproduksi secara buatan untuk digunakan dalam industri makanan. Dibandingkan dengan prekursor, sukrosa, gula invert lebih manis dan produk-produknya cenderung tetap lembab dan kurang rentan terhadap kristalisasi. Oleh karena itu dipakai oleh tukang roti , yang mengacu pada sirup sebagai atau sirup invert trimoline.
Campuran glukosa dan fruktosa yang diproduksi oleh hidrolisis sukrosa, 1,3 kali lebih manis daripada sukrosa. Disebut demikian karena aktivitas optik terbalik dalam proses. Hal ini penting dalam pembuatan kembang gula, dan terutama permen direbus , sejak kehadiran 10-15% gula invert maka dapat mencegah kristalisasi sukrosa.
Dalam istilah teknis, sukrosa adalah disakarida , yang berarti bahwa itu adalah molekul yang berasal dari dua gula sederhana monosakarida. Dalam kasus sukrosa, monosakarida blok bangunan ini adalah fruktosa dan glukosa. Pemecahan sukrosa adalah reaksi hidrolisis . hidrolisis dapat diinduksi hanya dengan pemanasan larutan sukrosa, tetapi lebih umum, katalis ditambahkan untuk mempercepat konversi. Secara biologis katalis yang ditambahkan disebut sucrases (pada hewan) dan invertases (pada tumbuhan). Sucrases dan invertases adalah jenis hidrolase glikosida enzim. Acid , seperti terjadi di jus lemon atau cream of tartar , juga mempercepat konversi sukrosa untuk membalikkan.
Gula invert dibuat dengan menggabungkan suatu sirup gula dengan sedikit asam (seperti cream of tartar atau jus lemon) dan pemanasan. Ini membalik, atau rusak, maka sukrosa menjadi dua komponen, glukosa dan fruktosa , sehingga mengurangi ukuran kristal gula. Karena struktur kristal halus, gula inversi menghasilkan produk yang lebih halus dan digunakan dalam membuat permen seperti fondant , dan beberapa sirup. Proses pembuatan selai dan jeli otomatis menghasilkan invert gula dengan menggabungkan asam alami dalam buah dengan gula pasir dan pemanasan campuran. Invert sugar can usually be found in jars in cake-decorating supply shops. Gula invert biasanya dapat ditemukan dalam stoples di toko-toko pasokan kue-dekorasi.
Dalam istilah teknis, sukrosa adalah disakarida, yang berarti bahwa itu adalah molekul yang berasal dari dua gula sederhana monosakarida. Dalam kasus sukrosa, monosakarida blok bangunan ini adalah fruktosa dan glukosa. The hidrolisis dapat diinduksi hanya dengan pemanasan larutan sukrosa, tetapi lebih umum, katalis ditambahkan untuk mempercepat konversi. Secara biologis katalis yang ditambahkan disebut sucrases (pada hewan) dan invertases (pada tumbuhan). Sucrases dan invertases adalah jenis hidrolase glikosida enzim. Acid , seperti terjadi di jus lemon atau cream of tartar , juga mempercepat konversi sukrosa untuk membalikkan.
Reaksi kimia inversi
Istilah ' invert ' berasal dari metode pengukuran konsentrasi sirup gula dengan menggunakan polarimeter . Plane terpolarisasi cahaya , ketika melewati sebuah sampel larutan sukrosa murni, diputar ke (kanan rotasi optik ). Sebagai solusinya adalah diubah menjadi campuran sukrosa, fruktosa dan glukosa, jumlah rotasi berkurang sampai (dalam larutan sepenuhnya dikonversi) arah putaran telah diubah (terbalik) dari kanan ke kiri.
C 12 H 22 O 11 (sucrose, Specific rotation = +66.5°) + H 2 O ( water , no rotation) → C 6 H 12 O 6 (glucose, Specific rotation = +52.7°) + C 6 H 12 O 6 (fructose, Specific rotation = -92°) C 12 H 22 O 11 (sukrosa, rotasi Tertentu = 66,5 °) + H 2 O ( air , tidak ada rotasi) → C 6 H 12 O 6 (glukosa, rotasi Tertentu = 52,7 °) + C 6 H 12 O 6 (fruktosa, rotasi Tertentu = -92 °)
net: +66.5° converts to -39° bersih: 66,5 ° mengkonversi ke -39 °
Hidrolisis adalah reaksi kimia di mana molekul rusak dengan penambahan air. Hidrolisis sukrosa menghasilkan glukosa dan fruktosa sekitar 85%, suhu reaksi dapat dipertahankan pada 50-60 ° C (122-140 ° F).
Sirup gula Inverted dapat dengan mudah dibuat dengan menambahkan sekitar satu gram asam sitrat atau asam askorbat , per kilogram gula. Cream of tartar (satu gram per kilogram) atau segar lemon jus (10 mililiter per kilogram) juga dapat digunakan.
Campuran direbus selama 20 menit, dan akan mengkonversi cukup dari sukrosa untuk secara efektif mencegah kristalisasi, tanpa memberikan rasa terasa asam. Balikkan sirup gula juga dapat dihasilkan tanpa menggunakan asam atau enzim dengan cara termal saja: dua bagian pasir sukrosa dan satu bagian air direbus selama lima sampai tujuh menit akan mengkonversi sebagian sederhana untuk membalikkan gula.
Semua sirup gula invert diciptakan dari hydrolysing sukrosa menjadi glukosa ( dekstrosa ) dan fruktosa dengan memanaskan larutan sukrosa, kemudian mengandalkan waktu saja, dengan katalitik sifat asam atau enzim digunakan untuk mempercepat reaksi. Komersial larutan asam disusun katalis dan dinetralkan ketika tingkat inversi yang diinginkan tercapai.
Daya simpan gula invert memiliki kadar air lebih rendah dari pada sukrosa sehingga daya simpan produk yang menggunakan gula invert sebagai bahan baku, lebih lama.
Daya simpan gula invert parsial adalah sekitar enam bulan, tergantung pada penyimpanan dan kondisi iklim. solusi inversi gula Crystallised mungkin dikembalikan ke keadaan cair mereka dengan lembut pemanasan.
Contoh:
* Gula-gula
* Madu adalah campuran (terutama) dari glukosa dan fruktosa, memberikan sifat yang mirip dengan sirup invert. Ini memberi kemampuan untuk tetap cair untuk jangka waktu yang lama.
* Jam, ketika dibuat, memproduksi gula invert selama pemanasan yang ekstensif di bawah aksi asam dalam buah.
* Sirup Golden adalah sirup sirup 56% invert sekitar, 44% sukrosa
* Fondant untuk mengisi cokelat adalah unik dalam bahwa enzim konversi ditambahkan, namun tidak diaktifkan sebelum pengisian enrobed dengan coklat.Sangat kental (dan dengan demikian formable) mengisi kemudian menjadi kurang kental dengan waktu, memberikan konsistensi kental yang diinginkan.
Luff Schoorl
Penentuan kadar glukosa dilakukan dengan cara menganalisis sampel melalui pendekatan proksimat. Terdapat beberapa jenis metode yang dapat dilakukan untuk menentukan kadar gula dalam suatu sampel. Salah satu metode yang paling mudah pelaksanaannya dan tidak memerlukan biaya mahal adalah metode Luff Schoorl. Metode Luff Schoorl merupakan metode yang digunakan untuk menentukan kandungan gula dalam sampel. Metode ini didasarkan pada pengurangan ion tembaga (II) di media alkaline oleh gula dan kemudian kembali menjadi sisa tembaga. Ion tembaga (II) yang diperoleh dari tembaga (II) sulfat dengan sodium karbonat di sisa alkaline pH 9,3-9,4 dapat ditetapkan dengan metode ini. Pembentukan (II)-hidroksin dalam alkaline dimaksudkan untuk menghindari asam sitrun dengan penambahan kompleksierungsmittel. Hasilnya, ion tembaga (II) akan larut menjadi tembaga (I) iodide berkurang dan juga oksidasi iod menjadi yodium. Hasil akhirnya didapatkan yodium dari hasil titrasi dengan sodium hidroksida (Anonim 2010).
Gula Pereduksi
Gula pereduksi yaitu monosakarida dan disakarida kecuali sukrosa dapat ditunjukkan dengan pereaksi Fehling atau Benedict menghasilkan endapan merah bata (Cu2O). selain pereaksi Benedict dan Fehling, gula pereduksi juga bereaksi positif dengan pereaksi Tollens (Apriyanto et al 1989). Penentuan gula pereduksi selama ini dilakukan dengan metode pengukuran konvensional seperti metode osmometri, polarimetri, dan refraktrometri maupun berdasarkan reaksi gugus fungsional dari senyawa sakarida tersebut (seperti metode Luff-Schoorl, Seliwanoff, Nelson-Somogyi dan lain-lain). Hasil analisisnya adalah kadar gula pereduksi total dan tidak dapat menentukan gula pereduksi secara individual. Untuk menganalisis kadar masing-masing dari gula pereduksi penyusun madu dapat dilakukan dengan menggunakan metode Kromatografi Cair Kinerja Tinggi (KCTK). Metode ini mempunyai beberapa keuntungan antara lain dapat digunakan pada senyawa dengan bobot molekul besar dan dapat dipakai untuk senyawa yang tidak tahan panas (Gritter et al 1991 dalam Swantara 1995).
Alkalis. Dengan larutan glukosa 1%, peraksi Fehling menghasilkan endapan berwarna merah bata, sedangkan apabila digunakan larutan yang lebih encer misalnya larutan glukosa 0,1% endapan yang terjadi berwarna hijau kekuningan. (McGilvery@Goldstein, 1996).